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Figure 1: Our physics based controllers start with an intuitive specification of the basemotion, and use reinforcement learning
to fine tune parameters for successful control of motions such as the throwing and catching of a can seen here.

ABSTRACT
We design a nominal controller for animating an articulated physics-
based human arm model, including the hands and fingers, to catch
and throw objects. The controller is based on a finite state machine
that defines the target poses for proportional-derivative control of
the hand, as well as the orientation and position of the center of the
palm using the solution of an inverse kinematics solver. We then use
reinforcement learning to train agents to improve the robustness of
the nominal controller for achieving many different goals. Imitation
learning based on trajectories output by a numerical optimization
is used to accelerate the training process. The success of our con-
trollers is demonstrated by a variety of throwing and catching tasks,
including flipping objects, hitting targets, and throwing objects to
a desired height, and for several different objects, such as cans,
spheres, and rods. We also discuss ways to extend our approach so
that more challenging tasks, such as juggling, may be accomplished.

CCS CONCEPTS
•Computingmethodologies→ Physical simulation;Machine
learning.
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1 INTRODUCTION
Creating convincing animations of human catching and throwing
is important for many computer animation, virtual reality, and
video game applications. While the most straight forward method
is to use motion capture, this approach may require capturing
many individual motion clips, or blending between multiple clips
so that many different scenarios can be handled. Another strat-
egy is to synthesize hand and arm motions using procedural and
learning-based approaches. Catching and throwing control has
been previously investigated in this context, but most approaches
use a simplified hand model that is not fully articulated. Rather, our
approach uses a fully articulated arm and hand model to generate
physically plausible and human-like animations for throwing and
catching. At the core of our method is a nominal controller that
can catch and throw objects of different shapes, and for a variety of
different tasks. With the help of reinforcement learning, controller
parameters are learned such that the controller may be used for
many different simulation states.

Inspired by the work of Pollard and Zordan [2005], the controller
is structured as a finite state machine (FSM) that sets the desired
hand pose and palm position and orientation for several phases:
approaching, pre-grasp, stable grasp, and release. This is likewise
similar to the work of Andrews and Kry [2013], but with a focus
on catching and throwing rather than in-hand manipulation. Each
state of the FSM defines a Hermite curve specifying the trajectory
of the target position for the hand to track, as well as the target
rotation. Given the target position and rotation, inverse kinematics
(IK) is used to solve for the corresponding joint angles. Most of the
control points for Hermite curves are computed by the planning
algorithm, except those of the THROW state, which are controlled by
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the reinforcement learning agent. The main idea is that it is rela-
tively straightforward to set up the planner to produce a trajectory
resembling what is necessary to accomplish the task, and the tacit
knowledge necessary for successful completion of the task can be
acquired through reinforcement learning.

Our goal is to create a controller that can be easily applied to
human hand models to generate natural catching and throwing
animations by focusing on three objectives:

• Simple parameter tuning. The user should only need to adjust
a small number of control parameters, and the remaining
ones are automatically determined.

• Natural motion. The catching and throwing motions gener-
ated by our system should be convincing, with smooth and
continuous trajectories, no abrupt unnatural movements,
and without awkward poses and joint rotations that are not
humanly possible.

• Robustness. The controllers should be able to handle several
different types of objects, and in this work, we work with
spheres, cylinders, cuboids, and clubs; the shape of these
objects can vary within a certain tolerance.

2 RELATEDWORK
Synthesis of throwing and catching motions has been studied by
several previous works in computer graphics. Chemin and Lee
[2018] use a reinforcement learning approach to train 2D physics-
based characters to juggle multiple balls. Their controller relies on
continually switching between throwing and catching modes. In
comparison, we stress the involvement of the fingers, because we
believe the posture of fingers and the orientation of the palm are
critical to successful catching and throwing. Earlier work by Jain
and Liu [2009] used an optimization framework to generate physi-
cally plausible trajectories for objects that match character motion,
such as juggling. Their approach is efficient enough for interactive
editing of the trajectories, yet real-time control in a dynamics setting
was not demonstrated. Yeo et al. [2012] combine gaze tracking with
hand, head, and upper body control to generate plausible hand-
eye coordination during catching tasks. Other work, while not
specifically focusing on catching and throwing, has demonstrated
that low-dimensional feedback controllers are often sufficient for
performing simple ball hitting tasks [Ding et al. 2015]. Throwing
and catching is also related to the task of dribbling basketballs,
which requires precise and agile control. Liu and Hodgins [2018]
propose learning the arm and locomotion control separately, where
the arm controller is responsible for hand position andmanipulation
of the ball. Their approach combines trajectory optimization with
RL to learn a robust control policy.

Grasping and hand animation is a related topic that has been
extensively studied in computer graphics, and Wheatland et al.
[2015] provide an excellent survey. Ye and Liu [2012] synthesized
realistic hand animations that matched body and object motions
captured by an optical marker system while satisfying frictional
contact constraints. Pollard and Zordan [2005] synthesized grasping
and handshake animations using a a finite state machine that
controlled the target pose. Andrews and Kry [2013] similarly based
their controller on a finite statemachine, but learned control policies
for a variety of in-hand manipulation tasks. Liu [2009] performed

dexterous manipulation of objects given an initial grasping pose
and a desired object trajectory.

Throwing and juggling skills have also been studied in robotics.
Kober et al. [2012b] learn a catching control policy for a robotic
apparatus with a net. They further demonstrate that a control policy
for hitting a ball can handily be transformed into one for catching
a ball. Kober et al. [2012a] perform robotic catching and juggling
using a state machine to open and close the gripper. Their approach
also benefits from an approach that combines vision-based tracking
and inverse kinematics. Related work by Kim et al. [2014] uses
a Gaussian mixture model to plan grasping poses for catching.
Belousov et al. [2016] demonstrate that a robust catching policy
alternates between reactive and predictive strategies based on the
amount of observation noise. Lampariello et al. [2011] compute
control parameters offline for many different catching scenarios us-
ing a constrained optimization framework, and real-time control is
then realized by regression to estimate optimal control parameters.

Work in the neuroscience community has analyzed human arm
motion for catching tasks to identify district phases [Kajikawa et al.
1999]. A key insight is that the motion depends on whether or not
an object is being caught with caution, and the catching motion
may vary according to the velocity of the object. Salehian et al.
[2016] leverage these insights to perform “soft” catching control,
which improves the success rate of grasping fast moving objects.
The state machine used by our controller also imitates the phases
of catching observed by Kajikawa et al. [1999]. Additionally, they
noted straight trajectories were used for movement of the palm in
pre-catching phases, and our controller uses a similar strategy to
compute trajectories for the palm based on predicted object motion.

In contrast to the work discussed here, we do not target robots
or build on known neuromuscular control models. Instead, fine ad-
justments necessary for successful control of an action are learned
starting from an easily specified nominal plan for the control.

3 MODEL AND METHODS
Our hand model includes a fully articulated arm and hand with
32 degrees of freedom (DOF) in total, as shown in Figure 2 where
joints are represented by line segments with different colors. The
upper arm is connected to a fixed shoulder (not shown in the figure)
with a ball joint. The angular limits and anchor points of the joints
are similar to that of human joints. The shape, size, and mass of the
model are based on the 50th percentile of American male [NASA
1995]. Following the work of Pollard and Zordan [2005], we use a
simple mesh to approximate collisions with the human hand for a
better grasp (i.e., the cup-like shape of the palm). The motion of the
whole model is driven relative to a neutral pose, which provides
good parametric control of joints over a range of motion suitable
for catching.

3.1 Controller Structure
The control scheme is defined as a finite state machine as shown
in Figure 3. This state machine determines the trajectory of the
center of the palm (position and orientation) at each frame, as well
as the timing for opening and closing the hand. The palm trajectory
is generated by a Hermite curve, which is then tracked using IK.
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Figure 2: Arm and hand with fingers in its neutral pose.
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Figure 3: The finite state machine used by our controllers.

Whereas the hand posture is tracked using PD control and a set of
predefined poses. The FSM consists of four states:

• CATCH: The hand opens and moves to the interception point
to intercept the projectile at time hit_time, which is dynami-
cally calculated by the nominal controller for each catch. The
hand closing is triggered by the first collision between the
hand and the projectile since the beginning of each CATCH
state, either in this state or in the following MIDDLE state.

• MIDDLE: The hand decelerates to zero velocity while moving
the projectile to the neutral position, which is suitable for
throwing the projectile.

• THROW: The hand throws the projectile. See Section 3.7.
• GOBACK: The hand goes back to a position which is suitable
for the next catch. See Section 3.6.

The timing of the transition between states is defined as in
Figure 3, where 𝑡 is the elapsed time since the beginning of each
state. These values are based on our intuition of how humans handle
projectiles, and they were adjusted to produce natural motion for
simple cases, such as catching and throwing a ball.

Note that the Hermite curves specify the trajectory of the center
of the palm, and inverse kinematics (Section 3.3) is used to to
solve for the corresponding joint angles of the arm. All parameters
defining the curves for each state are either specified by the nomi-
nal controller or computed by reinforcement learning. Rotational
motion is generated using spherical linear interpolation (SLERP)
between the beginning and ending rotations of each state. Most
target rotations are specified by the nominal controller, except
for the final rotation of the palm during the THROW state, which is
determined by an RL agent. Similarly, the timing of opening the
hand during THROW is a parameter that is automatically adjusted by
the RL algorithm. Conversely, during the CATCH and MIDDLE states,
the hand closes when contact between the hand and the projectile
is detected.

3.2 Palm Trajectory
In each state, we calculate a trajectory for the palm of the hand,
which is defined by a Hermite curve that interpolates the position,
orientation, and velocity of the palm from an initial configuration
to the target configuration at the end of the state. PD control is
used to actuate the joints of the arm and wrist in order to drive the
hand to that target. In order to ensure a smooth and natural motion
for the arm, intermediate PD joint angle targets are computed by
interpolating along the Hermite curve for the duration of the state.

At each time-step, an intermediate target configuration for the
palm is computed in the time interval [𝑡0, 𝑡1], where 𝑡0 is the time
when the controller transitioned to the current state, and 𝑡1 is
the time when the controller will transition to the next state. The
intermediate position of the palm 𝑝 (𝑡) at some time 𝑡 ∈ [𝑡0, 𝑡1] is
thus computed as

𝑝 (𝑡) = (2𝑡3 − 3𝑡2 + 1)𝑝0 + Δ𝑡 (𝑡3 − 2𝑡2 + 𝑡)𝑣0
+ (−2𝑡3 + 3𝑡2)𝑝1 + Δ𝑡 (𝑡3 − 𝑡2)𝑣1 ,

(1)

where Δ𝑡 = (𝑡1 − 𝑡0), 𝑝0 is the initial position of the palm, 𝑣0
is the initial velocity, 𝑝1 is the ending position, 𝑣1 is the ending
velocity, and 𝑝 (𝑡) gives the desired position at time 𝑡 ∈ [𝑡0, 𝑡1].
However, for the orientation of the palm, SLERP is used to compute
an intermediate rotation.

The Hermite curve ensures that both the position and velocity
of the hand are continuous during the time interval. For the CATCH,
MIDDLE, and GOBACK states, the planning algorithm computes the
parameters of the Hermite curve according to the position, orienta-
tion, linear and angular velocity of the projectiles. Further details
on catch planning are discussed in Section 3.6. For the THROW state,
the parameters are controlled by the reinforcement learning agent
and further details are discussed in Section 3.7.

3.3 Inverse Kinematics
The spline and SLERP interpolations compute the target position
and orientation of the palm at any time 𝑡 . Our controller then uses
a damped least squares IK algorithm [Buss 2004] to solve for the
joint angles of the shoulder, elbow, and wrist joints. This gives an
update for the joint angles at each time step, such that

Δ\ = 𝐽𝑇 (𝐽 𝐽𝑇 + _2𝐼 )−1Δ𝑒 , (2)

where 𝐽 is the end effector Jacobian matrix, 𝐼 is a identity matrix,
_ is a non-zero damping constant, and Δ𝑒 is a vector encoding
the transform from the current palm configuration to the target
configuration. Note that the position and orientation of the end
effector (i.e., the center of the palm) are weighted differently in the
Jacobian matrix 𝐽 for better catching. Hence, Δ\ gives the changes
for the joint angles to track the desired trajectory of the palm.

3.4 PD Control
Proportional-derivative (PD) control is used to perform low-level
control of the arm and hand by computing joint torques that actuate
the joints toward the desired pose. At each time step, a torque is
computed for each articulated degree of freedom 𝑖 , such that

𝜏𝑖 = 𝑘𝑝

(
\̃𝑖 − \𝑖

)
︸    ︷︷    ︸

Δ\𝑖

+𝑘𝑑 ¤\𝑖 , (3)
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where 𝑘𝑝 is the joint stiffness, 𝑘𝑑 is the damping of the joint, \̃𝑖 and
\𝑖 are the target angle and current angle of the degree of freedom,
respectively, and ¤\ is the relative angular velocity of the joint. The
control torque 𝜏 is then applied equally and oppositely to bodies
coupled by the joint. Furthermore, the torques are clamped so that
the value does not exceed typical human strength.

For every joint, the 𝑘𝑝 and 𝑘𝑐 is calculated by

𝑘𝑝 = 𝑤𝑝𝑚joint
2 + 𝑘base , 𝑘𝑑 = 𝑤𝑑𝑚joint , (4)

where𝑤𝑝 and𝑤𝑑 are constant scaling factors for the stiffness and
damping, respectively,𝑚joint is the total mass driven by the joint,
and 𝑘base is a constant base stiffness. The values𝑤𝑝 = 500,𝑤𝑑 = 0.2,
and 𝑘base = 0.1 are used for all experiments, but they can be easily
adjusted to simulate different muscle strengths. We use PD control
on IK results smoothly interpolated by Hermite curves. And from
the intuition that the hand grasp is tighter as it closes harder, we set
the closed hand PD target to fit a smaller shape than the projectile.
Additionally, we expect the learning process should compensate
the inaccuracy of PD.

3.5 Hand Pose
For performance reasons, spline interpolation and IK control are
not used to control the hand pose due to the large number of DOFs
involved. Rather, the target hand pose is one of three predefined
poses: neutral, open, and closed. The neutral pose is used during the
GOBACK phase. The closed pose is used for the CATCH and MIDDLE
phases of the controller, whereas the hand model transitions to the
open pose for the THROW phase. To smoothly transition between the
different hand postures, we use SLERP to generate intermediate
joint angle targets for the PD controllers of the fingers to achieve
natural opening or closing motions.

3.6 Trajectory Planning
Given the initial position and velocity of the projectile, our con-
troller predicts the trajectory of the projectile. The intersection of
the trajectory and the interception plane (the plane where we want
the hand to catch the projectile) is the target intersection point.
For the shapes whose orientation also matters, we also take the
orientation into account. After we find the interception point, the
end position of the Hermite curve for the CATCH state is simply
the interception point. The end velocity of the curve is 70% of
the velocity of the projection at the interception point, which
is intuitively similar to human catching behavior and makes the
projectile less likely to slip away. The start position and velocity
of the curve are the position and velocity of the hand when the
controller just enters the CATCH phase. As for the orientation, our
controller aligns the normal of the dorsal side of the hand with the
velocity of the projectile at the interception point. Additionally, for
projectiles similar to can or club, our controller aligns the z-axis
of the hand (as in the right-hand rule) with the longest axis of the
projectile at the interception point of the catch.

For the MIDDLE state, the end position is the neutral position
while the end velocity is zero. For the GOBACK state, the end position
is the projection of the hand position on the rest plane (𝑦 = 0.6 m)
when the controller just enters the GOBACK state. The end velocity
is also zero. The start positions and velocities of curves are the

state

action

state action

Q(s, a)

Actor Critic

Figure 4: The actor-critic network. Each intermediate layer
has 64 nodes. We use tanh activation for the output of the
actor network, and linear activation for the output of the
critic network. For the other layers, we use ReLU activation.

positions and velocities of the hand when the controller enters
these states.

3.7 Reinforcement Learning
We use a reinforcement learning agent to control the throwing
process, for example, the parameters of the Hermite curve of the
THROW state. The state vector is (𝑝ℎ, 𝑟ℎ, 𝑝𝑝 , 𝑟𝑝 ), where 𝑝ℎ and 𝑟ℎ is
the hand position and rotation vector in the world frame, 𝑝𝑝 is
the object position in the hand’s frame, and 𝑟𝑝 is object rotation
vector in the world frame. The action vector is (𝑑offset, 𝑟target, 𝑡open),
where 𝑑offset controls the throwing direction, 𝑟target controls the
hand rotation, and 𝑡open is the time when opening the hand. The
reward function varies from different task (see Section 4).

We use DDPG to train our agent. The structure of the actor and
critic networks is shown in Figure 4. Each fully connected layer
has 64 nodes. We use ReLU activation as the activation function
except for the output of the action network, where we use tanh as
the activation function.

4 RESULTS
We present three scenarios in which our controller learns a de-
sired catching and throwing motion: throwing to a desired height,
throwing to hit a target, and flipping an object. Below we describe
the simulation environment, and the reward necessary for each
scenario. Our controller can do the catch-and-throw in consecutive
loops just like in the acrobatics. And the reinforcement learning
greatly improves the performance of our controller. Starting from
the same initial configuration on the same task, the nominal con-
troller with hand-tuned parameters usually fails at the 2-5th loop
of catch-and-throw, but the RL controller with learned parameters
appear to be able to loop infinitely.

4.1 Simulation Configuration
Physics simulations are performed using ode4j, which is a java port
of the Open Dynamic Engine. All experiments use a time step of
ℎ = 0.2 ms, which is the same as Pollard and Zordan [2005]. We
found that is was necessary to carefully tune simulation parameters
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Figure 5: Error distribution of catching and throwing a
sphere to the desired height

in order for successful grasping of ballistic objects. Specifically,
the error reduction parameter (ERP) and constraint force mixing
(CFM) term, which are used by the engine for Baumgarte constraint
stabilization, were tuned to give the behavior of compliant contacts.
We note that other researchers have also noted the importance of
compliant contacts for successful grasping of objects [Jain and Liu
2011]. A stiffness coefficient of 𝑘𝑝 = 5× 104 was used for all contact
constraints. A critical damping coefficient was also computed, such
that 𝑘𝑑 = 2

√
𝑘𝑝 (𝑚1 +𝑚2) where 𝑚1 and 𝑚2 are the masses of

the two colliding bodies. The ERP and CFM parameters are then
computed as

𝐸𝑅𝑃 =
ℎ𝑘𝑝

ℎ𝑘𝑝 + 𝑘𝑑
, 𝐶𝐹𝑀 =

1
ℎ𝑘𝑝 + 𝑘𝑑

.

The simulator resolves collision by creating a temporary contact
joint which applies forces to the two colliding bodies. The contact
joint is used to detect collisions between the hand and projectile as
mentioned in Section 3.1.

Additionally, a small amount of world damping is applied to
the linear and angular velocities of all bodies in order to model air
resistance. A linear velocity damping of 0.01 and angular damping
of 0.03 were used for all of our simulations. We also observed that
damping helped to reduce oscillations that can occur due to stiff
PD controllers.

4.2 Throwing to Desired Heights
Our first example shows throwing a sphere to the desired height,
and then catching the sphere and repeating this process with dif-
ferent heights. The sphere weights 0.1 kg and its radius is 0.03 m.
The desired height changes over time. In our implementation, we
embed the goal to the state vector. In this example, it is the desired
height 𝑦target. The reward function we use is

𝑟 =

{
𝑒10|𝑦−𝑦target | if the hand catches the sphere
−0.1

��𝑝𝑝 − 𝑝𝑑
�� if the hand misses the sphere

(5)

where 𝑦 is the maximum height the sphere reaches, 𝑦target is the
desired height, 𝑝𝑝 is the position of the sphere when it hits the
ground, and 𝑝𝑑 is the target position to prevent the hand from
throwing the object far away from the hand. We only use the error
term𝑦−𝑦𝑡𝑎𝑟𝑔𝑒𝑡 because we want to learn how to deal with different
heights.

Before learning, the nominal controller has to be hand-tuned
for every different height. With the help of reinforcement learning,

0 1000 2000 3000 4000 50000
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Episode Reward 
Average Reward 
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Figure 6: Learning curve of throwing to a desired height.

Figure 7: Examplemotions produced by our controllers. Top,
throwing a sphere to the target height denoted by the red
plane. Middle, throwing a sphere to hit the target object, and
then catching the bounce. Bottom, flipping a can.

the controller can catch and throw the sphere to different heights
with learned parameters in real-time. Figure 5 shows the error
distribution in 320 consecutive catch-and-throw loops with learned
parameters, where the desired height is randomly set in each loop.
The slightly left skewed error distribution with mean around 0.01 m
shows that the learned controller can generally achieve the task
within 0.1 m of error. Figure 6 shows the learning curve, where the
episode and average reward fluctuates along 10 and the episode
Q0 increases linearly. Top row of Figure 7 shows the visual result
where the target height is indicated by a transparent red plane.

4.3 Throwing to Hit Target
The second example shows throwing a sphere to hit a box, catching
it when it bounces back, and repeating this process. The box has a
size of 0.1 m × 0.1 m × 0.1 m. The position of the box is encoded
into the state vector in order to hit the box in different positions.
The reward function we define is

𝑟 =

{
1 if "hit then catch" is successful

−0.1𝑑 otherwise (6)
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Figure 9: Learning curve of catching and throwing the
sphere to hit a target box.

where 𝑑 is the minimum distance between the sphere and the cube.
Before learning, the nominal controller has to be hand-tuned for

every different box position. After learning, the agent can throw
the sphere to hit boxes with different position in real-time. Figure 9
shows the learning curve, where the learning speeds up around
the 3000th episode but the rewards greatly fluctuate. Middle row
of Figure 7 shows the visual result. Event though the agent can
hit the box at many locations, there are still some positions where
the agent fails to hit the box or cannot catch the sphere when it
rebounds, especially near the boundary. We test the agent by setting
the target box to different positions across the space. Each test is
considered successful if the agent can consecutively hit a fixed box
6 times. Figure 8 shows the distribution of successes and failures
in 538 tests. Generally, as the box goes further from the center, the
rate of success decreases.

4.4 Can Flipping
Our third example shows flipping a can over and over. The can
weights 0.1 kg. The radius of the can is 0.03 m and the height is
0.1 m. To encourage flipping, we define the reward function as

𝑟 =

{
𝑒10|𝑝𝑝−𝑝𝑑 | + 𝑟flip if "flip then catch" is successful
−0.1

��𝑝𝑝 − 𝑝𝑑
�� otherwise

(7)

where 𝑟flip is 1 if there is a flip, and 0 if there is not. We use the
idea of imitation learning in order to speed up the training process.
In detail, we use covariance matrix adaptation evolution strategy

Episode Reward 
Average Reward 
Episode Q0
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40

80

120

160

200

Episode

Reward

Figure 10: Learning curve of flipping the can.

[Hansen 2006] to learn how to make a single flip with different
initial conditions. Then we use these examples to train an actor-
network, which we use as the initial actor-network for the agent.

Before learning, the nominal controller usually fails around
the 2nd to 5th flip. With the help of reinforcement learning, the
controller appears to be able to do the flipping infinitely. The result
animation can be seen in the bottom row of Figure 7, while the
learning curve can be seen in Figure 10.

5 CONCLUSIONS AND FUTUREWORK
We present a system for catching and throwing objects with a
physically based control of a simulated hand, where the nominal
controller is straightforward to design with human intuition while
the fine control producing successful motion is obtained through
reinforcement learning.

Although our method can complete throwing and catching dif-
ferent objects, and achieve different goals, there are some potential
improvements we can seek in the future.

First, the target poses for opening and closing the hand are set
manually. To adapt different objects and tasks, we need to train
different policies with manually tuned poses. We consider these
poses are learnable by the RL agents. Learning in full space can be
extremely hard due to the curse of dimensionality. A potential way
to overcome it is to do a principal component analysis on a set of
representative poses, and use a reduced set of coordinates.

Second, our current agent only learns how to throw. For the catch-
ing part, it is controlled by the manually tuned nominal control. For
more complicated tasks, we need to learn a catching policy as well to
increase its flexibility. We will need to modify the DDPG algorithm
to train a throwing policy and a catching policy simultaneously.

There are other tasks we would like to try in the future too.
For example, interactions between multiple hands, manipulating
multiple objects at the same time, and eventually, juggling different
objects.
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